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S1 Error Model Selection

This section is based on [1, § 3.5], and we are concerned with the selection of an appropriate error
model from a given data set, {Ui,j}M,N

i=1,j=1. A common and flexible error model is given by the
nonconstant variance error model

Ui,j = f(xi, tj |θ0) + fγ(xi, tj |θ0)εi,j , (1)

in which εi,j
i.i.d.∼ N (0, σ2). This error model is flexible in that it can account for both constant

variance error models (when γ = 0) and nonconstant variance error model (when γ > 0). In the
latter case, we can quantify the extent of the variance’s dependence on f(x, t) with estimation of γ.
Computing and plotting residuals is a useful way to estimate an appropriate value of γ from data.

From Equation (1), we observe that the modified residuals,

ri,j =
Ui,j − f(xi, tj |θ)
fγ(xi, tj |θ)

, i = 1, ...,M ; j = 1, ..., N (2)

should be MN realizations of an i.i.d. random variable when γ has been chosen correctly and
θ ≈ θ0. One can thus choose the correct form of Equation 1 for a given data set and mathematical,
f(x, t; θ), as follows: (i). Pick a value of γ, (ii). compute θ̂ by minimizing the generalized cost
function, i.e., θ̂ = arg minθ

∑M,N
i=1,j=1 r

2
i,j , and (iii). compute and plot each ri,j . For the correct

value of γ, the plotted modified residual computations will appear i.i.d. Note this method can be
used for error models different from Equation (1). For example, Nardini and Bortz [3] used residual
computations to demonstrate that a spatially-autocorrelated error model can account for numerical
error arising from a PDE’s discretization scheme during an inverse problem methodology.

As an example, we have plotted the modified results for the advection-diffusion dataset with
σ = 0.25 in Figure S1 for γ = 0, 0.5, and 1.0. For each value of γ, we trained the ANN on the
assumption that data was of the form given by Equation (1). For γ = 0 and 0.5, we observe that the
residuals do not appear i.i.d., as they fan out with increasing values of u(x, t). At γ = 1.0, however,
we see that the variance of the modified residuals appears constant, suggesting that γ = 1.0 is the
appropriate value from the data.

S2 Comparing spline and bi-spline methods for denoising data

We compared the accuracy in learning the correct PDE when using 1-dimensional cubic CV
splines versus cubic CV bi-splines for denoising data and approximating partial derivatives (Figures
S2,S3,S4). We found that PDE-FIND with pruning always has a higher TPR value when using
bi-spline computations as compared to 1-dimensional splines.
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Figure S1: Modified Residual computations for various values of γ from the advection-diffusion
data set with σ = 0.25. Top left: results for γ = 0, Top right: results for γ = 0.5, bottom left:
results for γ = 1.0.
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PDE-FIND with pruning Results for the Diffusion-Advection Equation
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Figure S2: TPR values for the diffusion-advection equation when using 1-dimensional cubic splines
versus cubic bi-splines for denoising data and approximating partial derivatives.

S3 Global Spline Calculations

We are concerned with approximating {Ui, j}M,N
i=1,j=1 with a global spline representation of the form

S(x, t) =

K,L∑
k=1,l=1

ck,lSk,l(x, t), (3)

where Sk,l(x, t) are normalized bivariate cubic B-splines defined on the knot locations (x, t)k,l =
{x̃k, ..., x̃k+4} × {t̃l, ..., t̃l+4}. In order to do so, we need to estimate a smoothing parameter, s,
the knot locations, {(x, t)k,l}K,Lk=1,l=1, and the spline coefficients, c = {ck,l}K,Lk=1,l=1. To obtain these

estimates, we split {Ui,j}M,N
i=1,j=1 into a training and validation set (50%/50%). Recall that bivariate

splines need to be fit to data on a rectangular grid domain, so we maintain this structure in the
training and validation set by selecting all spatial points but only every other time point for the
training data. The remaining points are placed in the validation data. While the (50%/50%)
training and validation split here is not equivalent to the (90%/10%) split used to train the ANN,
we found that implementing the global splines on a (90%/10%) took too much time for practical
computation (training one data set took over a day on an Intel i7 6-core 3.5GHz desktop computer).

To find the optimal value of s, we set we begin with s = MN +
√

2MN , a previously-proposed
upper bound on this smoothing parameter [2], and find the knot locations and coefficient values
that minimize the GLS cost function JS(θ) (Equation (2.4) from in the main text) on the validation
data. Further description of identification of spline locations of coefficients is given below. We then
continue to divide s in half and re-compute S(x, t) for the updated values of s until JS(θ) begins
to increase on the validation data. We then compute S(x, t) for a finer grid of s values around
whichever value minimized JS(θ) and ultimately select whichever of these value minimize JS(θ)
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Figure S3: TPR values for the Fisher-KPP equation when using 1-dimensional cubic splines versus
cubic bi-splines for denoising data and approximating partial derivatives.
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PDE-FIND with pruning Results for the nonlinear Fisher-KPP Equation
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Figure S4: TPR values for the nonlinear Fisher-KPP equation when using 1-dimensional cubic
splines versus cubic bi-splines for denoising data and approximating partial derivatives.

S4



on the validation data.
For a given value of s, we find the spline locations and coefficents in a similar manner to that

described in [1, § 3.2.6]. We first fit the global spline model to the training data using a constant
variance (OLS) error model. This first-pass spline computation allows us to estimate u(xi, tj) for
the training data and in turn estimate J (θ). We now iteratively fit the cubic spline method to the
training data using J (θ) with γ = 1.0 until the number of knot locations (determined by the Scipy
bisplev algorithm) does not change by more than one over five consecutive calculations. We then
fix the knot locations and iteratively estimate the spline coefficients, ck,l, by minimizing J (θ) with
γ = 1 until either the maximum of the relative absolute difference between consecutive estimates,
i.e., the inf-norm, converges within 10−2 or 100 such computations have been performed.

S4 PDE-FIND without pruning results

We found that using PDE-FIND without pruning results in learning the wrong equation when
applied to data from biological transport models, even when no noise is added to the data. We
evaluated accuracy, using the true positive ratio (TPR) as a metric, for the diffusion-advection
(Figure S5), Fisher-KPP (Figure S6), and nonlinear Fisher-KPP equations (Figure S7).

For the diffusion-advection equation, we found that the TPR value of the final learned equation
when using ANN approximations is higher for all values of σ when using pruning with PDE-
FIND than without pruning (Figure S5). In general, for small values of σ, we observed that
pruning enables PDE-FIND to better learn the true equation when using CV local spline and
finite difference computations, but it harms the ability to learn the true equation for larger values
of σ. For example, the median TPR value increases after pruning when using finite difference
approximations from TPR = 0.33 to 0.5 for σ = 0. However, the TPR instead decreases from TPR
= 0.33 to 0 at σ = 0.05 and from TPR = 0.5 to 0 at σ = 0.10. The median TPR value when using
spline approximations increases from TPR = 0.3 to 0.5 at σ = 0 and from TPR = 0.33 to 1 at
σ = 0.01. At σ = 0.10, the median values decreased from TPR = 1.0 to 0.5.

For the Fisher-KPP equation, the median TPR value for PDE-FIND with the ANN computa-
tions always increases after using pruning (Figure S6). The median value for PDE-FIND with finite
difference computations increases for σ = 0, 0.01, but decreases from TPR = 0.5 to 0 for σ = 0.05
and from TPR = 0.45 to 0 for σ = 0.10. The median TPR value for PDE-FIND with CV local
spline computations increases for σ = 0, 0.01, 0.05, and 0.10, but decreases from TPR = 0.4 to 0
at both σ = 0.25 and 0.50. Thus, pruning always helped PDE-FIND learn the true equation when
using the ANN method, and helps the other computational methods for small noise levels.

For the nonlinear Fisher-KPP qquation, the median TPR value always improved the accuracy of
the PDE-FIND method when using ANN approximations (Figure S7). When using finite difference
approximations, the median TPR value increases for σ = 0, 0.01.05. The median value decreases
from TPR = 0.3 to 0 at σ = 0.10 for finite difference approximations. When using CV local spline
approximations, the median TPR value increases when σ = 0 and 0.01. The median TPR value
decreased from TPR = 0.3 to 0 at σ = 0.50. While the median value is never TPR = 1 for this
equation, these results suggest that pruning in general helps reduce the number of incorrect terms
in the library.

S5 Tables of learned PDEs

This section contains tables of the final learned PDEs for data from each equation considered at
a given noise level. The equation form is the one most commonly selected by the PDE-FIND
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Figure S5: TPR values for the diffusion-advection equation.

method with pruning over the 1,000 different training-validation splits of ut and Θ. The provided
parameter values are the mean value for these parameters when the equation form was the final
learned equation.
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Figure S6: TPR values for the Fisher-KPP equation.
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Figure S7: TPR values for the nonlinear Fisher-KPP equation.

S7



True Equation

ut = 0.01uxx − 0.8ux
σ Method Learned Equation

0.0 FD ut = −0.799974ux + 0.010414uxx − 0.000350u2ux
0.01 FD ut = −0.800226ux + 0.009940uxx
0.05 FD ut = 0

0.10 FD ut = 0

0.25 FD ut = 0

0.50 FD ut = 0

0.0 LCVSP ut = −0.807744ux + 0.011464uxx + 0.000670u2ux + 0.000012u2uxx
0.01 LCVSP ut = −0.793993ux + 0.011877uxx
0.05 LCVSP ut = −0.796512ux + 0.012290uxx
0.10 LCVSP ut = −0.774238ux
0.25 LCVSP ut = −0.709333ux
0.50 LCVSP ut = 0

0.0 LNCVSP ut = −0.820792ux + 0.011752uxx
0.01 LNCVSP ut = −0.819847ux + 0.011726uxx
0.05 LNCVSP ut = −0.819094ux + 0.012085uxx
0.10 LNCVSP ut = −0.790680ux
0.25 LNCVSP ut = −0.760747ux
0.50 LNCVSP ut = −0.729489ux
0.0 GNCVSP ut = −0.764276ux
0.01 GNCVSP ut = −0.694783ux
0.05 GNCVSP ut = −0.611367ux
0.10 GNCVSP ut = −0.581202ux
0.25 GNCVSP ut = 0

0.50 GNCVSP ut = 0

0.0 ANN ut = −0.809223ux + 0.010963uxx
0.01 ANN ut = −0.802903ux + 0.011107uxx − 0.000074u2uxx + 0.000765u2x
0.05 ANN ut = −0.810360ux + 0.010693uxx
0.10 ANN ut = −0.808996ux + 0.009535uxx
0.25 ANN ut = −0.795770ux + 0.009386uxx
0.50 ANN ut = −0.801987ux + 0.007888uxx + 0.000835u2x

Table S1: Learned Equations for the diffusion-advection equation.
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True Equation

ut = 0.02uxx + 10.0u− 10.0u2

σ Method Learned Equation

0.0 FD ut = 0.020086uxx − 9.994321u2 + 9.995583u

0.01 FD ut = −10.154641u2 + 9.950923u

0.05 FD ut = 0

0.10 FD ut = 0

0.25 FD ut = 0

0.50 FD ut = 0

0.0 LCVSP ut = 0.020474uxx − 9.993088u2 + 9.996574u

0.01 LCVSP ut = 0.019600uxx − 9.972429u2 + 9.977920u

0.05 LCVSP ut = −10.130441u2 + 9.925709u

0.10 LCVSP ut = −10.087935u2 + 9.916230u

0.25 LCVSP ut = 0

0.50 LCVSP ut = 0

0.0 LNCVSP ut = 0.020435uxx − 9.991312u2 + 9.994767u

0.01 LNCVSP ut = 0.019522uxx − 9.977385u2 + 9.982515u

0.05 LNCVSP ut = −10.121782u2 + 9.916090u

0.10 LNCVSP ut = −10.087677u2 + 9.926292u

0.25 LNCVSP ut = 0

0.50 LNCVSP ut = 0

0.0 GNCVSP ut = −10.264500u2 + 10.229065u

0.01 GNCVSP ut = −8.598153u2 + 9.375428u

0.05 GNCVSP ut = −10.346971u2 + 10.122676u

0.10 GNCVSP ut = −10.007866u2 + 10.075741u

0.25 GNCVSP ut = −9.312518u2 + 9.304600u

0.50 GNCVSP ut = −5.621682u2 + 7.104374u

0.0 ANN ut = 0.023272uxx − 9.307794u2 + 9.533177u

0.01 ANN ut = 0.023017uxx − 9.397175u2 + 9.600546u

0.05 ANN ut = 0.020534uxx − 9.733768u2 + 9.837442u

0.10 ANN ut = 0.022343uxx − 9.287166u2 + 9.587605u

0.25 ANN ut = 0.011912uxx − 11.160631u2 + 12.537031u
+0.071219uuxx − 0.105350u2x

0.50 ANN ut = −0.015750ux + 0.013682uxx − 8.688903u2

+12.179728u− 0.034142u2ux + 0.077472uuxx − 0.109284u2x

Table S2: Discovered Equations for the Fisher-KPP Equation
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True Equation

ut = 0.020000uuxx + 0.020000u2x + 10.000000u− 10.000000u2

σ Method Learned Equation

0.0 FD ut = 0.000178uxx − 9.996233u2 + 9.996516u+ 0.019671uuxx + 0.019729u2x
0.01 FD ut = −10.268294u2 + 10.210714u

0.05 FD ut = −9.531702u2 + 9.731417u

0.10 FD ut = 0

0.25 FD ut = 0

0.50 FD ut = 0

0.0 LCVSP ut = 0.000760uxx − 10.013375u2 + 10.013144u+ 0.018798uuxx + 0.018324u2x
0.01 LCVSP ut = 0.005632uxx − 9.820662u2 + 9.789693u+ 0.017619u2x
0.05 LCVSP ut = −10.393255u2 + 10.287537u

0.10 LCVSP ut = −10.264929u2 + 10.194679u

0.25 LCVSP ut = −10.146329u2 + 10.082739u

0.50 LCVSP ut = 0

0.0 LNCVSP ut = 0.000738uxx − 10.011882u2 + 10.011901u+ 0.018874uuxx + 0.018394u2x
0.01 LNCVSP ut = 0.005585uxx − 9.828360u2 + 9.796878u+ 0.017437u2x
0.05 LNCVSP ut = −10.396293u2 + 10.285593u

0.10 LNCVSP ut = −10.333053u2 + 10.259315u

0.25 LNCVSP ut = −9.875062u2 + 9.794690u

0.50 LNCVSP ut = 0

0.0 GNCVSP ut = −0.025827uxx − 10.407031u2 + 10.439599u

0.01 GNCVSP ut = −0.010336uxx − 10.663675u2 + 10.575536u

0.05 GNCVSP ut = −0.009571uxx − 10.670700u2 + 10.563083u

0.10 GNCVSP ut = −9.792682u2 + 9.824648u

0.25 GNCVSP ut = −0.017669uxx − 10.233510u2 + 10.177806u

0.50 GNCVSP ut = −0.023890uxx − 9.392645u2 + 9.576821u

0.0 ANN ut = 0.009869uxx − 9.295491u2 + 9.237594u− 0.032329uuxx + 0.016924u2x
0.01 ANN ut = −9.398164u2 + 9.389853u+ 0.024833u2x
0.05 ANN ut = 0.009080uxx − 9.311857u2 + 9.245655u− 0.032236uuxx + 0.016673u2x
0.10 ANN ut = −0.006456uxx − 8.965042u2 + 9.140129u+ 0.027012u2x
0.25 ANN ut = −0.010203uxx − 7.927777u2 + 8.551556u+ 0.034169u2x
0.50 ANN ut = 0.285757− 0.026084uxx − 5.419017u2 + 6.724382u+ 0.044730u2x

Table S3: Discovered Equations for the nonlinear Fisher-KPP Equation.
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